An Eulerian approach to uid–structure interaction and goal-oriented mesh adaptation
نویسنده
چکیده
We propose an Eulerian framework for modelling uid–structure interaction (FSI) of incompressible uids and elastic structures. The model is based on an Eulerian approach for describing structural dynamics. This is achieved by tracking the movement of the initial positions of all ‘material’ points. In this approach the displacement appears as a primary variable in an Eulerian framework. Our approach uses a technique which is similar to the level set method in so far that it also tracks initial data, in our case the set of initial positions (IP), and from this determines to which ‘phase’ a point belongs. To avoid the occasional reinitialization of the initial position set we employ the harmonic continuation of the structure velocity eld into the uid domain. By using the IP set for tracking the structure displacement, we can ensure that corners and edges of the uid–structure interface are preserved well. Based on this monolythic model of the FSI we apply the Dual Weighted Residual (DWR) method for goal-oriented a posteriori error estimation to stationary FSI problems. Examples are presented based on the model and for the goal-oriented local mesh adaptation. Copyright ? 2006 John Wiley & Sons, Ltd.
منابع مشابه
Dynamic Fracture Analysis Using an Uncoupled Arbitrary Lagrangian Eulerian Finite Element Formulation
This paper deals with the implementation of an efficient Arbitrary Lagrangian Eulerian (ALE) formulation for the three dimensional finite element modeling of mode I self-similar dynamic fracture process. Contrary to the remeshing technique, the presented algorithm can continuously advance the crack with the one mesh topology. The uncoupled approach is employed to treat the equations. So, each t...
متن کاملمدلسازی اجزای محدود برش ماده فولادی با جت آب دارای ذرات برنده
Numerical modeling of machining processes is of significance in the parametric analysis and optimization of their performance. In this paper, a finite element-based model of abrasive waterjet (AWJ) cutting of a ductile material is presented with the help of an explicit, nonlinear finite element method. In this model, both solid-solid interaction and fluid-structure interaction are considered. T...
متن کاملFully Anisotropic Goal-oriented Mesh Adaptation for the Euler Equations
A main advantage of unstructured meshes, i.e., tetrahedral meshes, is their flexibility for generating elements with large shape and size variations everywhere in the domain. Moreover, an adequate adaptation of the mesh impacts favorably numerical schemes. Consequently, an automatic process to control the mesh generation is of main importance. This document describes a goal-oriented anisotropic...
متن کاملLagrangian Finite Element Analysis of Newtonian Fluid Flows
A fully Lagrangian nite element method for the analysis of Newtonian ows is developed. The approach furnishes, in e ect, a Lagrangian implementation of the compressible Navier–Stokes equations. As the ow proceeds, the mesh is maintained undistorted through continuous and adaptive remeshing of the uid mass. The principal advantage of the present approach lies in the treatment of boundary conditi...
متن کاملA 3D Goal-Oriented Anisotropic Mesh Adaptation Applied to Inviscid Flows in Aeronautics
This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006